Fourier Spectra of Binomial APN Functions

نویسندگان

  • Carl Bracken
  • Eimear Byrne
  • Nadya Markin
  • Gary McGuire
چکیده

In this paper we compute the Fourier spectra of some recently discovered binomial APN functions. One consequence of this is the determination of the nonlinearity of the functions, which measures their resistance to linear cryptanalysis. Another consequence is that certain error-correcting codes related to these functions have the same weight distribution as the 2-error-correcting BCH code. Furthermore, for field extensions of F2 of odd degree, our results provide an alternative proof of the APN property of the functions. School of Mathematical Sciences, University College Dublin, Ireland. ([email protected]) Research supported by Irish Research Council for Science, Engineering and Technology Postdoctoral Fellowship. School of Mathematical Sciences, University College Dublin, Ireland. ([email protected]) Research supported by the Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006. School of Mathematical Sciences, University College Dublin, Ireland. ([email protected]) Postdoctoral Fellow supported by the Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006. School of Mathematical Sciences, University College Dublin, Ireland. ([email protected]) Research supported by the Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Fourier Spectra of New APN Functions

Almost perfect nonlinear (APN) functions on F2n are functions achieving the lowest possible differential uniformity. All APN functions discovered until now are either power or quadratic ones, except for one sporadic multinomial nonquadratic example on F26 due to Edel and Pott. It is well known that certain binary codes with good properties can be obtained from APN functions, and determining the...

متن کامل

On the Fourier spectra of the infinite families of quadratic APN functions

It is well known that a quadratic function defined on a finite field of odd degree is almost bent (AB) if and only if it is almost perfect nonlinear (APN). For the even degree case there is no apparent relationship between the values in the Fourier spectrum of a function and the APN property. In this article we compute the Fourier spectrum of the quadranomial family of APN functions from [5]. W...

متن کامل

Quadratic Binomial APN Functions and Absolutely Irreducible Polynomials

We show that many quadratic binomial functions of the form cx i +2 j + dx u +2 v (c, d ∈ GF (2m)) are not APN infinitely often. This is of interest in the light of recent discoveries of new families of quadratic binomial APN functions. The proof uses the Weil bound from algebraic geometry.

متن کامل

Some Results on the Known Classes of Quadratic APN Functions

In this paper, we determine theWalsh spectra of three classes of quadratic APN functions and we prove that the class of quadratic trinomial APN functions constructed by Göloğlu is affine equivalent to Gold functions.

متن کامل

The Simplest Method for Constructing APN Polynomials EA-Inequivalent to Power Functions

The first APN polynomials EA-inequivalent to power functions have been constructed in [7, 8] by applying CCZ-equivalence to the Gold APN functions. It is a natural question whether it is possible to construct APN polynomials EA-inequivalent to power functions by using only EA-equivalence and inverse transformation on a power APN function: this would be the simplest method to construct APN polyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2009